Archdave's Feynman Pages - Part 2

"Surely You're Joking, Mr. Feynman!"

by Richard P. Feynman


by Richard P. Feynman


Index

  1. Part 2 - The Princeton Years

  2. "Surely You're Joking, Mr. Feynman!"
  3. Meeeeeeeeeee!
  4. A Map of the Cat?
  5. Monster Minds
  6. Mixing Paints
  7. A Different Box of Tools
  8. Mindreaders
  9. The Amateur Scientist



"Surely You're Joking, Mr. Feynman!"

        by Richard P. Feynman

--------

Part 2

The Princeton Years


--------
"Surely You're Joking, Mr. Feynman!"

     When I was an undergraduate at MIT I loved it. I thought it was a great
place, and I wanted to go to graduate school there too, of course. But  when
I went to Professor Slater and told him of my intentions, he said, "We won't
let you in here."
     I said, "What?"
     Slater said,  "Why do  you think you should  go  to  graduate school at
MIT?"
     "Because MIT is the best school for science in the country."
     "You think that?"
     "Yeah."
     "That's why you should go to some other school. You should find out how
the rest of the world is."
     So I decided to go to  Princeton. Now Princeton had a certain aspect of
elegance. It was an imitation  of an English school, partly. So  the guys in
the fraternity, who knew  my rather rough, informal manners, started  making
remarks like "Wait till  they find  out who they've got coming to Princeton!
Wait till they  see the mistake they  made!" So I decided to try to be  nice
when I got to Princeton.
     My  father  took me to Princeton in his car, and I got my room,  and he
left. I hadn't been there an hour  when I was met by a man: "I'm the Mahstah
of Residences heah, and I should like to tell you that the Dean  is having a
Tea this aftanoon,  and he  should like to have all of you come. Perhaps you
would be so kind as to inform your roommate, Mr. Serette."
     That was my introduction to  the graduate "College" at Princeton, where
all the  students  lived. It was like an  imitation  Oxford or Cambridge  --
complete with accents (the master of residences was a  professor of  "French
littrachaw"). There was a porter downstairs, everybody  had  nice rooms, and
we ate all our meals together, wearing academic gowns, in a great hall which
had stained-glass windows.
     So the very  afternoon I  arrived in Princeton I'm going to the  dean's
tea, and  I didn't even know  what a "tea"  was, or why!  I  had  no  social
abilities whatsoever; I had no experience with this sort of thing.
     So I come up  to the door, and there's Dean Eisenhart, greeting the new
students: "Oh, you're  Mr. Feynman," he  says. "We're glad to  have you." So
that helped a little, because he recognized me, somehow.
     I  go through the door, and there are some ladies, and some girls, too.
It's all very formal and I'm  thinking  about where to sit down and should I
sit next to this girl, or not, and how  should I behave, when I hear a voice
behind me.
     "Would you like  cream  or lemon in your tea,  Mr. Feynman?" It's  Mrs.
Eisenhart, pouring tea.
     "I'll  have both, thank you," I say,  still looking for where I'm going
to sit, when suddenly I hear "Heh-heh-heh-heh-heh. Surely you're joking, Mr.
Feynman."
     Joking? Joking? What the hell did  I just say? Then I  realized what  I
had done. So that was my first experience with this tea business.
     Later on,  after I had been  at Princeton longer,  I  got to understand
this "Heh-heh-heh-heh-heh." In  fact it  was  at  that first tea,  as  I was
leaving, that I realized  it meant "You're making a social  error."  Because
the next time  I  heard this same cackle,  "Heh-heh-heh-heh-heh,"  from Mrs.
Eisenhart, somebody was kissing her hand as he left.
     Another time, perhaps a year  later,  at another tea, I was talking  to
Professor Wildt,  an  astronomer  who had  worked out  some theory about the
clouds  on Venus. They were supposed to be formaldehyde  (it's wonderful  to
know what we once  worried  about)  and he  had it all figured out, how  the
formaldehyde was precipitating, and so on. It  was extremely interesting. We
were talking about all this stuff, when a little lady came up and said, "Mr.
Feynman, Mrs. Eisenhart would like to see you."
     "OK, just a minute..." and I kept talking to Wildt.
     The little lady came back again  and said, "Mr. Feynman, Mrs. Eisenhart
would like to see you."
     "OK, OK!" and I go over to Mrs. Eisenhart, who's pouring tea.
     "Would you like to have some coffee or tea, Mr. Feynman?"
     "Mrs. So-and-so says you wanted to talk to me."
     "Heh-heh-heh-heh-heh.  Would  you like to  have  coffee,  or  tea,  Mr.
Feynman?"
     "Tea," I said, "thank you."
     A few  moments later  Mrs.  Eisenhart's  daughter and a schoolmate came
over,  and  we  were  introduced  to  each other.  The  whole  idea  of this
"heh-heh-heh" was: Mrs. Eisenhart didn't want to talk to me,  she wanted  me
over there getting tea when her daughter and friend came over, so they would
have someone to talk to. That's the way it worked. By  that time I knew what
to do when I  heard "Heh-heh-heh-heh-heh." I didn't say, "What do you  mean,
'Heh-heh-heh-heh-heh'?";  I knew  the "heh-heh-heh"  meant "error,"  and I'd
better get it straightened out.
     Every night we wore academic gowns to dinner. The first night it scared
the life  out of  me, because I didn't  like formality. But I  soon realized
that the  gowns were a  great  advantage. Guys  who were out  playing tennis
could rush into their  room, grab  their academic gown,  and put it on. They
didn't have to  take time off to  change their  clothes or take a shower. So
underneath  the   gowns  there   were   bare  arms,   T-shirts,  everything.
Furthermore,  there was a rule that you never cleaned the gown, so you could
tell  a first-year man from a second-year man, from a third-year man, from a
pig! You never cleaned the gown and you never repaired it, so the first-year
men  had very nice, relatively clean gowns,  but by the  time you got to the
third  year or so, it was nothing but  some  kind of cardboard thing on your
shoulders with tatters hanging down from it.
     So when I got to Princeton, I went to  that tea on Sunday afternoon and
had dinner that evening in an academic gown at the "College." But on Monday,
the first thing I wanted to do was to see the cyclotron.
     MIT had built a  new cyclotron while I was  a student there, and it was
just  beautiful! The cyclotron itself was in one room, with the  controls in
another room. It was beautifully  engineered. The wires ran from the control
room to the cyclotron underneath in conduits, and there was  a whole console
of buttons and meters. It was what I would call a gold-plated cyclotron.
     Now I  had read  a  lot  of papers on cyclotron experiments, and  there
weren't many from MIT. Maybe they were just starting. But there were lots of
results from  places like Cornell, and  Berkeley, and above  all, Princeton.
Therefore what I  really wanted to  see,  what I was looking forward to, was
the PRINCETON CYCLOTRON. That must be something.
     So  first  thing on Monday,  I go into the physics  building  and  ask,
"Where is the cyclotron -- which building?"
     "It's downstairs, in the basement -- at the end of the hall."
     In  the  basement? It was an old building.  There was no  room  in  the
basement for a cyclotron. I walked down to the end of the hall, went through
the door, and in ten seconds I learned why Princeton was right for me -- the
best  place for me to go to school. In this room there were wires strung all
over the  place! Switches  were hanging from the  wires,  cooling  water was
dripping  from the valves, the room was full  of stuff, all out in the open.
Tables piled  with tools were everywhere; it was the most godawful  mess you
ever  saw. The whole cyclotron  was there in one  room, and it was complete,
absolute chaos!
     It reminded me of my lab at  home. Nothing at MIT had ever reminded  me
of  my  lab at home.  I suddenly realized why Princeton was getting results.
They were working with the instrument. They built  the instrument; they knew
where everything was, they knew how everything worked, there was no engineer
involved, except maybe  he was working  there too. It  was much smaller than
the cyclotron at MIT, and "gold-plated"? -- it was  the exact opposite. When
they wanted to fix a vacuum, they'd drip glyptal on it,  so there were drops
of glyptal on the floor. It was wonderful! Because they worked with it. They
didn't have to sit in another room and push buttons! (Incidentally, they had
a fire in  that  room, because of all the chaotic mess that they had  -- too
many  wires -- and it destroyed the cyclotron. But I'd better not tell about
that!)
     (When I  got  to Cornell I  went to look  at the cyclotron there.  This
cyclotron hardly required a room: It was about a yard across -- the diameter
of the whole thing.  It was the world's smallest cyclotron, but they had got
fantastic  results. They had all kinds of  special techniques and tricks. If
they wanted to  change something  in the "D's" --  the D-shaped half circles
that  the particles go around -- they'd take a screwdriver,  and remove  the
D's by hand, fix  them, and put them back. At Princeton it was a lot harder,
and at MIT you had  to take  a crane  that came rolling  across the ceiling,
lower the hooks, and it was a hellllll of a job.)
     I learned  a lot of different things from different schools. MIT  is  a
very good place; I'm not trying to put it down. I was  just in love with it.
It has developed  for  itself a  spirit, so that  every member  of the whole
place thinks  that it's the  most wonderful place in  the world -- it's  the
center, somehow,  of scientific and technological development  in the United
States,  if not the world. It's like a New Yorker's view of  New  York: they
forget  the rest of  the country.  And while you don't get a  good sense  of
proportion there, you do get  an excellent sense of being with it and in it,
and having motivation and desire to keep on -- that you're specially chosen,
and lucky to be there.
     So MIT was  good, but Slater was  right  to  warn  me to go  to another
school  for my graduate  work. And I often  advise my students the same way.
Learn what the rest of the world is like. The variety is worthwhile.
     I once did an experiment in the cyclotron laboratory at  Princeton that
had some startling results. There was a problem in a hydrodynamics book that
was being discussed by all the  physics students. The  problem is this:  You
have an S-shaped lawn sprinkler --  an S-shaped pipe on a pivot  -- and  the
water squirts out at right angles to the axis and makes it spin in a certain
direction.  Everybody knows which way it goes around; it backs away from the
outgoing water.  Now the question is this:  If  you had a lake,  or swimming
pool -- a big supply of water -- and you put the  sprinkler completely under
water, and sucked the water in, instead of squirting it out, which way would
it turn?  Would it turn  the same way as  it  does when you squirt water out
into the air, or would it turn the other way?
     The answer is perfectly clear at first sight. The trouble was, some guy
would think it  was perfectly clear one  way, and another guy would think it
was perfectly  clear the  other  way.  So  everybody  was  discussing it.  I
remember at one particular seminar, or tea,  somebody went up  to Prof. John
Wheeler and said, "Which way do you think it goes around?"
     Wheeler said, "Yesterday, Feynman convinced me that it went  backwards.
Today, he's convinced  me equally well that it  goes around the other way. I
don't know what he'll convince me of tomorrow!"
     I'll  tell you an  argument that  will make you think it's one way, and
another argument that will make you think it's the other way, OK?
     One argument  is that  when  you're sucking  water  in, you're sort  of
pulling  the water  with  the  nozzle, so  it will go  forward, towards  the
incoming water.
     But then another guy comes along and  says,  "Suppose we hold  it still
and ask what kind of a torque we need to  hold it still. In the case of  the
water going out,  we all know  you  have to hold it  on the outside  of  the
curve, because of the centrifugal force of the water going around the curve.
Now, when the water goes around the same curve the other way, it still makes
the same centrifugal  force  toward the outside of the  curve. Therefore the
two  cases  are the same,  and the sprinkler will go  around the  same  way,
whether you're squirting water out or sucking it in."
     After some thought, I finally made  up my mind what the answer was, and
in order to demonstrate it, I wanted to do an experiment.
     In the  Princeton cyclotron  lab  they had a  big carboy  --  a monster
bottle of water. I thought this was just  great for the experiment. I  got a
piece of copper tubing and bent it  into  an S-shape. Then  in  the middle I
drilled a hole,  stuck  in a piece of rubber hose, and  led it up through  a
hole in a cork  I  had put in  the top  of the  bottle. The cork had another
hole, into which I put another piece of rubber hose, and connected it to the
air  pressure supply  of the  lab.  By blowing air into the  bottle, I could
force water into the copper tubing exactly as if I were sucking it  in. Now,
the S-shaped tubing wouldn't turn around, but it would twist (because of the
flexible rubber  hose), and I  was  going to measure the  speed of the water
flow by measuring how far it squirted out of the top of the bottle.
     I got it all set up, turned on the  air supply, and it went "Puup!" The
air pressure blew the cork out of the bottle. I wired it in very well, so it
wouldn't jump  out. Now the experiment  was going pretty good. The water was
coming  out, and the hose was twisting, so I put  a little  more pressure on
it, because  with a higher speed, the measurements would be more accurate. I
measured the angle very  carefully, and measured the distance, and increased
the pressure  again,  and suddenly the whole thing just blew glass and water
in all directions throughout the laboratory. A guy who had come to watch got
all wet  and had to go home and change his clothes (it's a miracle he didn't
get  cut  by the glass),  and lots of cloud  chamber  pictures that had been
taken patiently using the cyclotron were all wet, but for  some reason I was
far enough away, or in some  such position  that I didn't  get very wet. But
I'll always remember how the great Professor Del Sasso, who was in charge of
the cyclotron, came over  to me and said  sternly, "The freshman experiments
should be done in the freshman laboratory!"


--------
Meeeeeeeeeee!

     On  Wednesdays at the Princeton Graduate College, various  people would
come in  to give  talks.  The speakers  were  often interesting,  and in the
discussions after the talks we  used to have a lot of fun. For instance, one
guy  in our  school  was  very  strongly anti-Catholic,  so  he  passed  out
questions in advance for people to  ask a religious speaker, and we gave the
speaker a hard time.
     Another time somebody  gave a talk about  poetry.  He talked  about the
structure  of  the  poem  and the  emotions that  come  with  it; he divided
everything  up into certain kinds of classes.  In the  discussion  that came
afterwards, he said, "Isn't that the same as in mathematics, Dr. Eisenhart?"
     Dr. Eisenhart was the dean of the graduate school and a great professor
of mathematics. He  was also very clever.  He said, "I'd like to  know  what
Dick  Feynman thinks  about it  in reference to theoretical physics." He was
always putting me on in this kind of situation.
     I  got  up  and said,  "Yes, it's very closely related. In  theoretical
physics, the  analog of the word is the  mathematical formula, the analog of
the  structure  of  the poem  is  the interrelationship  of the  theoretical
bling-bling with  the so-and-so"  -- and  I went  through the  whole  thing,
making a perfect analogy. The speaker's eyes were beaming with happiness.
     Then I said, "It seems to me that  no matter what you say about poetry,
I could find a way  of making up an  analog with any subject, just as I  did
for theoretical physics. I don't consider such analogs meaningful."
     In  the great big dining  hall  with  stained-glass  windows,  where we
always ate,  in  our steadily  deteriorating academic gowns, Dean  Eisenhart
would  begin each  dinner by  saying grace  in Latin. After dinner  he would
often get up and make some announcements. One night Dr. Eisenhart got up and
said, "Two  weeks  from now, a professor  of psychology  is coming to give a
talk about hypnosis. Now,  this professor thought it would be much better if
we had a real demonstration of hypnosis instead of just  talking  about  it.
Therefore he would like some people to volunteer to be hypnotized..."
     I get all excited: There's no question  but  that I've  got to find out
about hypnosis. This is going to be terrific!
     Dean Eisenhart  went on to say that it  would  be good if three or four
people would volunteer so that the hypnotist could try them out first to see
which ones would be able  to be hypnotized,  so he'd  like to urge very much
that we apply for this. (He's wasting all this time, for God's sake!)
     Eisenhart was  down at one  end of the hall, and I  was way down at the
other end,  in the back. There  were hundreds  of guys there.  I  knew  that
everybody was going to want to do this, and I was terrified that he wouldn't
see  me  because  I  was  so far  back.  I  just  had  to  get  in  on  this
demonstration!
     Finally Eisenhart said, "And so I would like to ask if there  are going
to be any volunteers..."
     I raised my hand and shot out of my seat, screaming as loud as I could,
to make sure that he would hear me: "MEEEEEEEEEEE!"
     He heard me  all right,  because there  wasn't  another soul. My  voice
reverberated throughout the hall  -- it  was  very embarrassing. Eisenhart's
immediate reaction  was, "Yes, of  course,  I knew you would  volunteer, Mr.
Feynman, but I was wondering if there would be anybody else."
     Finally  a  few   other  guys  volunteered,  and  a   week  before  the
demonstration the man came to practice on us, to see if  any of us would  be
good  for hypnosis. I knew about  the phenomenon, but  I didn't know what it
was like to be hypnotized.
     He started to work on me and soon I got into a position  where he said,
"You can't open your eyes."
     I said to  myself,  "I bet I could  open my eyes, but  I  don't want to
disturb the situation:  Let's see how  much  further  it goes."  It  was  an
interesting situation: You're only slightly fogged out, and  although you've
lost a  little  bit, you're pretty sure  you could  open  your eyes. But  of
course, you're not opening your eyes, so in a sense you can't do it.
     He went through a lot of stuff and decided that I was pretty good.
     When  the real  demonstration came he  had  us walk on  stage,  and  he
hypnotized us in front of the whole  Princeton Graduate College.  This  time
the effect was stronger; I guess I had learned how to become hypnotized. The
hypnotist  made various demonstrations, having me do  things that I couldn't
normally  do,  and at  the  end he said that after I came  out  of hypnosis,
instead of returning to my seat directly, which was the natural way to go, I
would walk all the way around the room and go to my seat from the back.
     All through the demonstration I was vaguely aware of what was going on,
and cooperating with the things the hypnotist said, but this time I decided,
"Damn it, enough is enough! I'm gonna go straight to my seat."
     When  it was  time to get up and go off  the stage, I  started  to walk
straight to my seat. But  then  an annoying feeling came  over me: I felt so
uncomfortable that  I couldn't continue.  I  walked all  the way  around the
hall.
     I was hypnotized in another situation some time later by a woman. While
I  was hypnotized she  said, "I'm going to light a match, blow  it out,  and
immediately touch the back of your hand with it. You will feel no pain."
     I thought, "Baloney!"  She  took  a  match, lit it, blew  it  out,  and
touched it to  the back  of my hand. It felt  slightly  warm.  My eyes  were
closed throughout all of this, but I was thinking, "That's easy. She lit one
match,  but touched  a different match to  my hand. There's nothin' to that;
it's a fake!"
     When I came  out of the  hypnosis and looked at the back of my hand,  I
got the biggest surprise: There was a burn  on  the back  of my hand. Soon a
blister grew, and it never hurt at all, even when it broke.
     So I found hypnosis to be a very interesting  experience.  All the time
you're saying  to yourself, "I could do  that, but I won't" -- which is just
another way of saying that you can't.


--------
A Map of the Cat?

     In  the Graduate College dining room at Princeton everybody used to sit
with his own group. I sat with the physicists, but after a bit I thought: It
would be nice to see what the rest of the world is doing, so  I'll sit for a
week or two in each of the other groups.
     When  I  sat with  the philosophers  I  listened to them  discuss  very
seriously a book  called  Process and Reality by Whitehead. They were  using
words in a funny way, and I couldn't quite understand what they were saying.
Now I  didn't  want to  interrupt them  in their  own conversation  and keep
asking them  to  explain  something, and on  the few  occasions that  I did,
they'd  try to  explain it to me, but I still didn't  get  it. Finally  they
invited me to come to their seminar.
     They had a  seminar that was like a  class. It  had been meeting once a
week to discuss a new chapter out of  Process and  Reality -- some guy would
give a report on it  and then  there would be a discussion.  I went to  this
seminar  promising myself  to keep  my mouth  shut,  reminding myself that I
didn't know anything about the subject, and I was going there just to watch.
     What happened there was typical -- so typical that it was unbelievable,
but true. First of all, I sat there without saying anything, which is almost
unbelievable,  but also true. A student  gave a report on the chapter  to be
studied that week. In it  Whitehead  kept using the words "essential object"
in  a particular technical  way that presumably he had defined, but  that  I
didn't understand.
     After  some  discussion  as  to  what  "essential  object"  meant,  the
professor  leading  the seminar said something meant  to clarify  things and
drew  something  that  looked like  lightning  bolts on the blackboard. "Mr.
Feynman," he said, "would you say an electron is an 'essential object'?"
     Well, now I was in trouble. I  admitted that I hadn't read the book, so
I  had no  idea  of what Whitehead meant by  the phrase;  I had only come to
watch. "But," I  said,  "I'll try to  answer the professor's question if you
will first answer a question from  me,  so I can have a better idea  of what
'essential object' means. Is a brick an essential object?"
     What I  had  intended  to  do  was  to  find  out  whether they thought
theoretical constructs were essential objects. The electron is a theory that
we use; it  is so useful in understanding the  way nature works  that we can
almost call it real. I wanted to make the idea of a theory clear by analogy.
In the case of the brick, my  next question was going to be, "What about the
inside of the brick?" -- and I  would then point out  that no  one  has ever
seen the inside of a brick. Every time you break the brick, you only see the
surface. That the brick has  an  inside  is a  simple  theory which helps us
understand things better. The  theory  of electrons is analogous. So I began
by asking, "Is a brick an essential object?"
     Then the  answers came out. One man stood up  and said,  "A brick as an
individual, specific brick. That  is what Whitehead  means  by  an essential
object."
     Another  man said,  "No,  it  isn't  the  individual  brick that  is an
essential object; it's the  general character that all bricks have in common
-- their 'brickness' -- that is the essential object."
     Another guy got up and  said,  "No, it's not in the  bricks themselves.
'Essential object' means the idea in the mind that you get when you think of
bricks."
     Another guy got up, and another, and I tell you I have never heard such
ingenious different  ways of looking at  a brick before.  And, just  like it
should in all stories  about philosophers, it ended up in complete chaos. In
all their previous  discussions they  hadn't  even asked themselves  whether
such a simple object as a  brick,  much less an electron, is  an  "essential
object."
     After that I went  around to the biology  table at dinner time.  I  had
always  had  some  interest  in  biology,  and the guys  talked  about  very
interesting things. Some  of them invited  me to come to a course they  were
going to have in  cell physiology.  I knew something about biology, but this
was a graduate course. "Do you think I can handle it? Will the professor let
me in?" I asked.
     They asked  the instructor,  E.  Newton Harvey,  who had  done a lot of
research on light-producing bacteria. Harvey said I could join this special,
advanced course provided  one thing --  that I  would do all  the  work, and
report on papers just like everybody else.
     Before the first class meeting, the guys who had invited me to take the
course wanted to show me some  things under  the microscope.  They had  some
plant cells in  there,  and you could  see  some little green  spots  called
chloroplasts (they make sugar when light shines on them) circulating around.
I  looked at them and then looked  up: "How do  they circulate? What  pushes
them around?" I asked.
     Nobody knew. It  turned out that it was not understood at that time. So
right away I found out  something about biology: it was very easy to find  a
question  that was very interesting, and that nobody knew the answer  to. In
physics  you had to go a  little deeper before you could find an interesting
question that people didn't know.
     When the course began, Harvey  started  out by  drawing  a  great,  big
picture of a cell on the blackboard and labeling all the  things that are in
a cell. He then talked about them, and I understood most of what he said.
     After the lecture, the guy who had invited  me said, "Well, how did you
like it?"
     "Just fine," I said. "The  only part  I didn't understand  was the part
about lecithin. What is lecithin?"
     The guy begins to explain in a monotonous voice: "All living creatures,
both  plant  and  animal,  are  made  of  little  bricklike  objects  called
'cells'..."
     "Listen," I said, impatiently,  "I know all that; otherwise  I wouldn't
be in the course. What is lecithin?"
     "I don't know."
     I had to report on papers along with everyone else, and the first one I
was  assigned was on  the effect of  pressure on cells -- Harvey chose  that
topic for me because it had something  that had to do with physics. Although
I understood  what I was doing,  I  mispronounced everything when I  read my
paper, and the class was always  laughing hysterically when I'd  talk  about
"blastospheres" instead of "blastomeres," or some other such thing.
     The  next  paper  selected  for  me  was  by  Adrian  and  Bronk.  They
demonstrated that nerve impulses were sharp,  single-pulse  phenomena.  They
had  done experiments with  cats  in  which they  had  measured  voltages on
nerves.
     I began to read the paper. It kept talking about extensors and flexors,
the gastrocnemius muscle, and so on. This and  that muscle were named, but I
hadn't  the foggiest idea  of  where  they were  located  in relation to the
nerves or to the cat. So I went to  the librarian in the biology section and
asked her if she could find me a map of the cat.
     "A map of the cat,  sir?" she  asked, horrified. "You mean a zoological
chart!" From then on  there  were rumors  about  some  dumb biology graduate
student who was looking for a "map of the cat."
     When it came  time for me to give my talk on the subject, I started off
by drawing an outline of the cat and began to name the various muscles.
     The other students in the class interrupt me: "We know all that!"
     "Oh,"  I say, "you do? Then no  wonder I can catch up with you  so fast
after you've had  four years  of  biology." They  had wasted all their  time
memorizing stuff like that, when it could be looked up in fifteen minutes.
     After the war, every  summer I would go traveling by  car somewhere  in
the United  States.  One  year,  after  I was at Caltech,  I thought,  "This
summer,  instead of  going to a different  place,  I'll  go  to  a different
field."
     It was  right  after Watson and Crick's  discovery  of the  DNA spiral.
There were some very good biologists at Caltech because Delbrück had his lab
there,  and Watson came  to  Caltech  to give  some  lectures on  the coding
systems  of DNA.  I went to  his lectures and  to  seminars in  the  biology
department and  got full  of  enthusiasm. It  was  a  very exciting  time in
biology, and Caltech was a wonderful place to be.
     I didn't think I was up to doing actual  research in biology, so for my
summer visit to the field of biology I thought  I would just hang around the
biology  lab and "wash dishes," while I watched what they were doing. I went
over  to the biology lab to tell  them my  desire,  and  Bob  Edgar, a young
post-doc who was sort of in charge there, said  he  wouldn't let me do that.
He said,  "You'll  have to  really do some research,  just  like a  graduate
student, and we'll give you a problem to work on." That suited me fine.
     I  took  a  phage  course, which  told  us  how  to  do  research  with
bacteriophages (a phage is a virus that contains DNA  and attacks bacteria).
Right  away I found  that I was saved a  lot of trouble because  I knew some
physics and mathematics.  I knew how atoms  worked in liquids,  so there was
nothing mysterious about how the centrifuge worked. I knew enough statistics
to understand the statistical errors  in counting little spots in a dish. So
while all the biology guys  were trying to understand  these "new" things, I
could spend my time learning the biology part.
     There  was one useful lab  technique I  learned in that  course which I
still use today. They taught us how to hold a test tube and take its cap off
with one hand  (you  use  your middle and index fingers), while leaving  the
other hand  free to do  something else  (like  hold  a  pipette that  you're
sucking cyanide up into). Now, I  can hold my toothbrush in  one  hand,  and
with the other hand, hold the tube of toothpaste, twist the cap off, and put
it back on.
     It  had  been discovered that phages could  have  mutations which would
affect their ability to attack bacteria, and we were supposed to study those
mutations. There  were also some phages  that  would have a  second mutation
which would reconstitute their ability to attack bacteria. Some phages which
mutated  back were exactly  the same as they were before. Others  were  not:
There was a slight difference in their effect on bacteria -- they would  act
faster or slower than normal, and the bacteria would grow slower  or  faster
than normal. In other  words, there were "back mutations," but they  weren't
always perfect; sometimes the  phage would recover  only part of the ability
it had lost.
     Bob Edgar suggested that I do an experiment which would try to find out
if the back  mutations occurred in the  same  place on the DNA  spiral. With
great care and a lot of tedious  work I was able to  find three examples  of
back  mutations  which had  occurred  very close  together  --  closer  than
anything  they had  ever  seen  so far -- and  which partially  restored the
phage's ability  to function. It was a slow job. It was  sort of accidental:
You had to wait around until you got a double mutation, which was very rare.
     I kept  trying to think of  ways to make a  phage mutate more often and
how to detect mutations more quickly, but before I could come up with a good
technique the  summer was over, and I  didn't feel like  continuing  on that
problem.
     However, my sabbatical year was coming up, so  I decided to work in the
same biology lab but  on a different subject. I worked with Matt Meselson to
some extent, and  then with a nice fella from England named J. D. Smith. The
problem had to  do with ribosomes, the  "machinery" in  the cell that  makes
protein from what  we now call messenger  RNA. Using radioactive substances,
we demonstrated that  the RNA  could come out of  ribosomes and could be put
back in.
     I did a very careful job in measuring and trying to control everything,
but it took me eight  months  to  realize that there was one  step that  was
sloppy. In preparing the bacteria, to get the ribosomes out, in  those  days
you ground it up with alumina in  a mortar. Everything else was chemical and
all under control, but  you could never repeat the way you pushed the pestle
around when you  were  grinding  the bacteria. So nothing  ever  came of the
experiment.
     Then  I  guess  I have to tell  about the time  I tried with Hildegarde
Lamfrom to discover whether peas could use the  same ribosomes as  bacteria.
The question  was  whether the  ribosomes  of  bacteria can  manufacture the
proteins  of humans or  other organisms. She had just developed a scheme for
getting the ribosomes out of peas and giving them messenger RNA so that they
would make pea  proteins. We  realized  that a very  dramatic and  important
question was whether ribosomes from bacteria, when given the peas' messenger
RNA,  would make  pea  protein or  bacteria  protein.  It was  to be a  very
dramatic and fundamental experiment.
     Hildegarde said, "I'll need a lot of ribosomes from bacteria."
     Meselson and I had  extracted enormous quantities of ribosomes from  E.
coli  for  some other  experiment.  I said,  "Hell, I'll  just give  you the
ribosomes we've got. We have plenty of them in my refrigerator at the lab."
     It would have been a fantastic and vital discovery if I had been a good
biologist. But  I  wasn't  a good  biologist.  We  had a  good  idea, a good
experiment, the right  equipment, but I screwed  it up: I  gave her infected
ribosomes  --  the  grossest  possible  error  that  you  could  make  in an
experiment like that. My ribosomes had been in the refrigerator for almost a
month, and  had  become contaminated  with  some other living  things. Had I
prepared those  ribosomes  promptly over again and given them to  her  in  a
serious and careful  way,  with everything  under  control, that  experiment
would have  worked,, and we  would  have  been the  first to demonstrate the
uniformity of life:  the machinery of making proteins, the ribosomes, is the
same in every  creature. We were there at the right place, we were doing the
right things, but I was doing things as an amateur -- stupid and sloppy.
     You  know what  it reminds me  of?  The  husband  of  Madame  Bovary in
Flaubert's book,  a dull country doctor who had some idea of how to fix club
feet, and all he did was screw people up.  I was similar to that unpracticed
surgeon. The other work on the phage I never wrote up  -- Edgar kept  asking
me to write it up, but I never got around to it. That's the trouble with not
being in your own field: You don't take it seriously.
     I did write something informally on it. I sent it to Edgar, who laughed
when he  read it. It wasn't in the  standard  form  that  biologists  use --
first, procedures, and so forth. I spent a  lot  of  time  explaining things
that all the biologists knew. Edgar made a shortened version, but I couldn't
understand  it. I don't think they ever published it.  I never  published it
directly.
     Watson thought  the  stuff I had done with phages was of some interest,
so  he invited  me to go to Harvard. I gave a talk to the biology department
about the double mutations which occurred so close together.  I told them my
guess was that one mutation made  a change in  the protein, such as changing
the  pH of an amino acid, while the other  mutation made the opposite change
on a different amino acid in the same protein, so that it partially balanced
the first mutation  -- not perfectly, but enough to  let  the  phage operate
again. I thought they were two changes in the same protein, which chemically
compensated each other.
     That  turned out not to be the case. It was found out a few years later
by people who undoubtedly developed a  technique for producing and detecting
the mutations  faster, that  what  happened  was,  the first  mutation was a
mutation in which an entire DNA base was missing. Now the "code" was shifted
and could  not  be  "read" any more.  The  second mutation was either one in
which an extra base was put  back  in, or two more  were taken out.  Now the
code  could be read again.  The closer the  second  mutation occurred to the
first, the less  message  would be altered by the double mutation,  and  the
more  completely the phage would recover its  lost abilities. The fact  that
there are three "letters" to code each amino acid was thus demonstrated.
     While I was at Harvard that week, Watson suggested something and we did
an experiment together for a few days. It was an incomplete experiment,  but
I learned some new lab techniques from one of the best men in the field.
     But that  was my big moment: I gave a seminar in the biology department
of Harvard! I always do that, get into something and see how far I can go.
     I learned a lot of things in biology, and I gained a lot of experience.
I got better  at pronouncing  the  words,  knowing  what not to include in a
paper or a seminar,  and detecting a  weak technique in an experiment. But I
love physics, and I love to go back to it.


--------
Monster Minds

     While  I  was still  a graduate student  at Princeton,  I  worked  as a
research assistant  under John Wheeler. He gave me a problem to work on, and
it got hard, and I wasn't getting anywhere. So I went back to an idea that I
had  had earlier,  at  MIT.  The  idea  was  that  electrons  don't  act  on
themselves, they only act on other electrons.
     There was this problem: When you shake an electron, it radiates energy,
and  so there's a loss. That means there must be a  force  on it. And  there
must be a different force when it's charged than when  it's not charged. (If
the force were exactly the same when it was charged and not charged,  in one
case it would lose energy, and in the other it  wouldn't. You can't have two
different answers to the same problem.)
     The standard theory was that it  was the electron acting on itself that
made  that  force  (called the force  of radiation reaction), and I had only
electrons  acting  on  other  electrons.  So  I  was  in some difficulty,  I
realized, by that time. (When  I was at MIT, I got the idea without noticing
the problem, but by the time I got to Princeton, I knew that problem.)
     What I thought was: I'll shake  this electron. It will make some nearby
electron shake, and the effect back  from  the nearby electron would be  the
origin of the force  of radiation reaction. So  I did some calculations  and
took them to Wheeler.
     Wheeler, right  away, said, "Well, that  isn't right  because it varies
inversely as  the square of the distance of the other electrons,  whereas it
should not  depend  on  any  of  these  variables at  all. It'll also depend
inversely upon the  mass of the other electron; it'll be proportional to the
charge on the other electron."
     What bothered  me  was, I thought he must have done  the calculation. I
only realized later that a man like  Wheeler could  immediately see all that
stuff when you give him the problem. I had to calculate, but he could see.
     Then he said, "And it'll  be delayed -- the wave returns late -- so all
you've described is reflected light."
     "Oh! Of course," I said.
     "But wait,"  he said. "Let's  suppose  it  returns by advanced waves --
reactions backward in time -- so it comes back at the right time. We saw the
effect varied inversely as the square of the distance, but suppose there are
a lot of electrons, all over space: the number is proportional to the square
of the distance. So maybe we can make it all compensate."
     We found out we could do that. It  came  out very  nicely, and fit very
well. It was a classical theory that could be right, even though it differed
from Maxwell's standard, or Lorentz's  standard theory.  It didn't have  any
trouble with  the infinity  of  self-action,  and it was  ingenious.  It had
actions  and  delays,  forwards  and  backwards  in  time  -- we  called  it
"half-advanced and half-retarded potentials."
     Wheeler  and I thought  the  next problem  was  to turn to the  quantum
theory of  electrodynamics,  which  had difficulties  (I  thought)  with the
self-action  of  the  electron.  We  figured  if  we could  get  rid  of the
difficulty first in classical physics, and then make a quantum theory out of
that, we could straighten out the quantum theory as well.
     Now that we had got the classical theory right, Wheeler said, "Feynman,
you're a young  fella -- you  should  give  a  seminar  on  this.  You  need
experience in giving talks. Meanwhile, I'll work out the quantum theory part
and give a seminar on that later."
     So it  was to be my first technical talk, and Wheeler made arrangements
with Eugene Wigner to put it on the regular seminar schedule.
     A day  or two before the  talk I saw  Wigner in the hall. "Feynman," he
said, "I think that work you're doing with Wheeler  is very  interesting, so
I've invited Russell to  the  seminar."  Henry Norris  Russell, the  famous,
great astronomer of the day, was coming to the lecture!
     Wigner  went  on.  "I  think  Professor  von  Neumann   would  also  be
interested." Johnny von Neumann was  the greatest mathematician around. "And
Professor Pauli is visiting from Switzerland, it so happens, so I've invited
Professor Pauli to come" -- Pauli was a very famous physicist -- and by this
time, I'm  turning yellow.  Finally, Wigner said, "Professor  Einstein  only
rarely  comes to our weekly seminars, but your  work  is so interesting that
I've invited him specially, so he's coming, too."
     By this time  I must have turned green, because Wigner  said, "No,  no!
Don't worry! I'll just warn you, though:  If Professor Russell  falls asleep
-- and he will undoubtedly fall  asleep -- it doesn't mean that the  seminar
is bad; he falls asleep in all the seminars. On the other hand, if Professor
Pauli is nodding all the time, and seems to  be in agreement as  the seminar
goes along, pay no attention. Professor Pauli has palsy."
     I went back to Wheeler and named  all the big,  famous people  who were
coming to the talk he got me to give, and told him I was uneasy about it.
     "It's  all  right,"  he   said.  "Don't  worry.  I'll  answer  all  the
questions."
     So I  prepared  the talk, and  when  the day  came, I went  in  and did
something that young men who have had no experience in giving talks often do
--  I put too  many equations up on the blackboard. You see,  a young  fella
doesn't know how to say, "Of course, that  varies inversely, and  this  goes
this way..." because everybody listening already knows; they can see it. But
he doesn't know. He can only make it come out  by actually doing the algebra
-- and therefore the reams of equations.
     As I was writing these equations all over the blackboard ahead of time,
Einstein came  in and  said  pleasantly, "Hello, I'm coming to your seminar.
But first, where is the tea?"
     I told him, and continued writing the equations.
     Then the time came to give  the talk, and here are these monster  minds
in front  of me,  waiting!  My  first  technical  talk  --  and  I have this
audience!  I mean they  would put me through the  wringer!  I remember  very
clearly  seeing my hands  shaking as they were pulling  out  my notes from a
brown envelope.
     But then a  miracle occurred, as it has occurred again  and again in my
life,  and  it's  very  lucky for me: the moment I start to  think about the
physics,  and  have  to  concentrate  on what  I'm  explaining, nothing else
occupies  my  mind -- I'm  completely immune  to  being nervous. So  after I
started to go, I just didn't know who was in the room. I was only explaining
this idea, that's all.
     But then the end  of the seminar came, and it was time  for  questions.
First off, Pauli, who was sitting  next to Einstein, gets up and says, "I do
not sink dis teory  can be  right, because of dis, and dis, and dis," and he
turns to Einstein and says, "Don't you agree, Professor Einstein?"
     Einstein says,  "Nooooooooooooo," a nice, German-sounding "No," -- very
polite. "I find only that it would be very difficult to make a corresponding
theory for gravitational interaction." He  meant for the  general  theory of
relativity, which  was  his baby. He  continued: "Since we have at this time
not a great deal  of experimental evidence, I am not absolutely  sure of the
correct  gravitational  theory." Einstein appreciated  that things might  be
different from what his theory stated; he was very tolerant of other ideas.
     I wish I  had remembered what  Pauli said, because  I  discovered years
later  that the  theory  was  not  satisfactory when  it came  to making the
quantum theory. It's possible  that that  great man  noticed  the difficulty
immediately and explained it to me in the question, but I was so relieved at
not  having  to  answer the  questions that I didn't really  listen to  them
carefully. I do remember walking up the steps of  Palmer Library with Pauli,
who  said to me, "What is Wheeler going to say about the quantum theory when
he gives his talk?"
     I said, "I don't know. He hasn't told me. He's working it out himself."
     "Oh?" he said. "The man works and doesn't  tell his assistant what he's
doing on the  quantum theory?"  He  came closer to  me and  said  in  a low,
secretive voice, "Wheeler will never give that seminar."
     And  it's true. Wheeler didn't give the seminar. He thought it would be
easy to  work out  the quantum  part; he  thought he  had it, almost. But he
didn't. And by the time the seminar came around, he realized he  didn't know
how to do it, and therefore didn't have anything to say.
     I  never  solved it,  either  --  a  quantum  theory  of half-advanced,
half-retarded potentials -- and I worked on it for years.


--------
Mixing Paints

     The reason  why I  say I'm "uncultured" or "anti-intellectual" probably
goes all the way back to  the time when I was in high  school. I  was always
worried about being  a  sissy; I didn't  want  to be too delicate. To me, no
real man ever paid any attention to poetry and such things.  How poetry ever
got written  -- that  never struck me!  So  I developed a  negative attitude
toward the guy who studies French literature, or studies too much  music  or
poetry -- all those "fancy"  things. I admired better the  steel-worker, the
welder, or the machine  shop man. I always thought the guy who worked in the
machine  shop and could make  things,  now he  was a real  guy!  That was my
attitude.  To be a  practical  man was,  to me,  always  somehow  a positive
virtue, and to be "cultured" or "intellectual" was not. The first was right,
of course, but the second was crazy.
     I  still  had  this  feeling  when I  was doing  my  graduate study  at
Princeton,  as you'll see.  I used to eat often in a nice  little restaurant
called Papa's Place. One day,  while I  was eating there, a  painter  in his
painting clothes came down from an upstairs room he'd been painting, and sat
near me.  Somehow we struck up a  conversation and he  started talking about
how you've got to learn a lot to be in the painting business. "For example,"
he said, "in this restaurant, what colors would  you use to paint the walls,
if you had the job to do?"
     I  said  I didn't know,  and  he  said, "You  have a dark  band  up  to
such-and-such a height, because, you see, people  who sit  at the tables rub
their elbows against the walls, so you don't want a nice, white wall  there.
It  gets dirty  too easily.  But above that, you do  want it white to give a
feeling of cleanliness to the restaurant."
     The guy  seemed to know  what he  was doing, and I was  sitting  there,
hanging on his words, when he said, "And you also have  to know about colors
-- how to get different colors when  you  mix  the paint. For example,  what
colors would you mix to get yellow?"
     I didn't know how to  get  yellow by  mixing paints. If it's light, you
mix  green  and red, but I knew he was talking paints. So I said,  "I  don't
know how you get yellow without using yellow."
     "Well," he said, "if you mix red and white, you'll get yellow."
     "Are you sure you  don't mean pink?" "No," he said, "you'll get yellow"
-- and I believed that he got yellow, because he was a professional painter,
and I always admired guys like that. But I still wondered how he did it.
     I got an idea. "It must be some kind of chemical change. Were you using
some special kind of pigments that make a chemical change?"
     "No," he  said, "any  old  pigments  will  work.  You  go down  to  the
five-and-ten and  get some  paint -- just a regular  can of red  paint and a
regular  can of white  paint -- and I'll mix 'em, and I'll show how you  get
yellow."
     At this juncture  I was thinking,  "Something  is  crazy. I know enough
about paints to know you won't get yellow, but he must know that you  do get
yellow, and therefore something interesting happens. I've got to see what it
is!" So I said, "OK, I'll get the paints." The painter went back upstairs to
finish his painting job, and the restaurant owner came over  and said to me,
"What's the idea of arguing with that man? The man is a painter; he's been a
painter all his life, and he says he gets yellow. So why argue with him?"
     I felt embarrassed. I didn't know what to say. Finally I  said, "All my
life,  I've been studying  light. And I think that with  red  and white  you
can't get yellow -- you can only get pink."
     So I went to the five-and-ten and got the paint, and brought it back to
the restaurant.  The  painter came down from  upstairs,  and  the restaurant
owner  was  there too. I put the  cans of paint on an  old  chair,  and  the
painter  began to mix the paint. He  put a  little more red, he put a little
more white -- it  still looked pink to me -- and he mixed some more. Then he
mumbled something  like, "I  used  to have a little tube  of yellow  here to
sharpen it up -- a bit -- then this'll be yellow."
     "Oh!" I said. "Of course!  You add  yellow, and you can get yellow, but
you couldn't do it without the yellow."
     The painter went back upstairs to paint.
     The restaurant owner said, "That guy has his nerve, arguing  with a guy
who's studied light all his life!"
     But that shows you how much I trusted  these  "real guys."  The painter
had told me  so much  stuff  that was reasonable that  I was ready to give a
certain  chance  that  there  was  an  odd phenomenon I didn't know.  I  was
expecting  pink,  but my  set of thoughts were, "The only way  to get yellow
will be something new and interesting, and I've got to see this."
     I've  very often made mistakes in  my physics  by thinking  the  theory
isn't as good as it really is, thinking that there are lots of complications
that are going to spoil it -- an attitude that anything can happen, in spite
of what you're pretty sure should happen.


--------
A Different Box of Tools

     At the Princeton  graduate school, the physics department  and the math
department shared  a  common lounge, and every day at four o'clock we  would
have  tea.  It  was a  way of  relaxing  in the  afternoon, in  addition  to
imitating  an  English  college.  People  would sit  around  playing  Go, or
discussing theorems. In those days topology was the big thing.
     I still  remember  a guy  sitting on the couch, thinking very hard, and
another guy standing in  front of him,  saying, "And therefore such-and-such
is true."
     "Why is that?" the guy on the couch asks.
     "It's trivial! It's  trivial!"  the standing guy says, and  he  rapidly
reels  off a series of logical steps: "First you assume thus-and-so, then we
have Kerchoff's this-and-that; then there's Waffenstoffer's Theorem,  and we
substitute this and construct that. Now you put the vector which goes around
here and  then thus-and-so..."  The  guy  on  the  couch  is  struggling  to
understand  all  this stuff, which goes on at high speed for  about  fifteen
minutes!
     Finally the  standing  guy comes out the other end, and the guy  on the
couch says, "Yeah, yeah. It's trivial."
     We physicists were laughing, trying to figure them out. We decided that
"trivial" means  "proved."  So we joked  with the mathematicians: "We have a
new  theorem -- that mathematicians can prove only trivial theorems, because
every theorem that's proved is trivial."
     The mathematicians didn't like that theorem, and  I  teased  them about
it. I  said  there are never any surprises --  that  the mathematicians only
prove  things that  are  obvious. Topology was not  at  all  obvious  to the
mathematicians.  There were  all kinds  of  weird  possibilities  that  were
"counterintuitive."  Then  I  got an idea. I challenged  them: "I  bet there
isn't a single theorem that you can tell me  -- what the assumptions are and
what  the theorem  is  in terms  I can understand -- where I  can't tell you
right away whether it's true or false."
     It often  went  like this: They would explain  to  me,  "You've got  an
orange, OK? Now you cut  the orange into a  finite number of pieces, put  it
back together, and it's as big as the sun. True or false?"
     "No holes?"
     "No holes."
     "Impossible! There ain't no such a thing."
     "Ha! We  got him!  Everybody gather around! It's So-and-so's theorem of
immeasurable measure!"
     Just when they think they've  got  me, I remind them,  "But you said an
orange! You can't cut the orange peel any thinner than the atoms."
     "But we have the condition of continuity: We can keep on cutting!"
     "No, you said an orange, so I assumed that you meant a real orange."
     So I always won. If I guessed it right, great. If I guessed  it  wrong,
there  was always  something I could find in their  simplification that they
left out.
     Actually, there was a certain amount of genuine  quality to my guesses.
I  had  a  scheme,  which  I still  use  today  when somebody is  explaining
something that I'm  trying to  understand:  I keep making up  examples.  For
instance, the mathematicians  would  come in  with  a  terrific theorem, and
they're all excited. As they're telling  me the conditions of the theorem, I
construct something  which fits all the conditions. You know, you have a set
(one ball) -- disjoint (two balls). Then the balls turn colors,  grow hairs,
or whatever, in  my head as they put more conditions on. Finally  they state
the theorem, which is some dumb thing about the ball which isn't true for my
hairy green ball thing, so I say, "False!"
     If it's true, they get all excited, and I let them go  on  for a while.
Then I point out my counterexample.
     "Oh. We forgot to tell you that it's Class 2 Hausdorff homomorphic."
     "Well, then,"  I say, "It's trivial! It's trivial!" By that time I know
which way  it goes,  even  though  I don't  know what Hausdorff  homomorphic
means.
     I guessed right most of  the time  because  although the mathematicians
thought their topology  theorems were counterintuitive,  they weren't really
as  difficult  as  they looked. You can get used to  the funny properties of
this ultra-fine cutting business and do a pretty good job of guessing how it
will come out.
     Although I  gave  the mathematicians a lot of trouble, they were always
very kind to me. They were a happy bunch of boys who were developing things,
and  they  were terrifically excited about  it.  They  would  discuss  their
"trivial" theorems, and always try to explain something  to you if you asked
a simple question.
     Paul Olum and  I shared  a bathroom. We  got to be good friends, and he
tried to  teach me mathematics. He got me up to homotopy groups, and at that
point I gave up. But the things below that I understood fairly well.
     One thing I never did learn was contour integration.  I  had learned to
do integrals by various methods shown in a book that my high school  physics
teacher Mr. Bader had given me.
     One day  he told me to stay after class.  "Feynman," he said, "you talk
too much and you make too much noise. I know why. You're bored. So I'm going
to give  you a book. You go  up there in the back, in the corner,  and study
this book,  and when  you know everything that's  in this book, you can talk
again."
     So every  physics class, I paid no attention to what was going  on with
Pascal's Law, or whatever they  were  doing. I was up in the back with  this
book: Advanced Calculus, by Woods. Bader knew I had studied Calculus for the
Practical Man a little  bit,  so he  gave me the real works  -- it was for a
junior or senior course in college. It had Fourier series, Bessel functions,
determinants, elliptic  functions -- all  kinds  of  wonderful stuff  that I
didn't know anything about.
     That  book also  showed  how  to  differentiate  parameters  under  the
integral  sign -- it's  a certain  operation. It turns out that's not taught
very much in the universities; they don't  emphasize it. But I caught on how
to  use  that method,  and I used  that one  damn  tool again and  again. So
because I was  self-taught using that book, I had peculiar  methods of doing
integrals.
     The result was,  when guys  at  MIT or Princeton  had  trouble doing  a
certain  integral,  it was  because they  couldn't  do  it with the standard
methods  they had  learned in school.  If it was contour  integration,  they
would have found it; if it  was a  simple series expansion,  they would have
found it. Then I come along and try differentiating under the integral sign,
and  often it worked. So I got a great reputation for  doing integrals, only
because my box of tools  was different from  everybody else's, and  they had
tried all their tools on it before giving the problem to me.


--------
Mindreaders

     My  father was always  interested  in magic  and  carnival  tricks, and
wanting  to  see  how  they  worked. One of  the  things he knew  about  was
mindreaders.  When  he was  a little boy, growing up in a small town  called
Patchogue, in  the middle of Long Island, it was announced on advertisements
posted all  over that a  mindreader  was coming  next Wednesday. The posters
said that some respected citizens -- the mayor, a judge, a banker  -- should
take a  five-dollar bill and hide it somewhere, and when the mindreader came
to town, he would find it.
     When he came, the people gathered  around to watch  him do his work. He
takes  the hands of the banker and the judge, who had hidden the five-dollar
bill, and starts to walk down the street. He gets to an intersection,  turns
the corner, walks down another  street, then another, to the correct  house.
He goes with  them, always  holding  their hands, into the house, up to  the
second floor, into the right room,  walks up  to a  bureau, lets go of their
hands,  opens  the  correct drawer, and there's the  five-dollar bill.  Very
dramatic!
     In  those days  it  was  difficult  to  get  a  good education,  so the
mindreader was hired as a tutor for my father. Well, my father, after one of
his lessons, asked the  mindreader how he was able to find the money without
anyone telling him where it was.
     The mindreader explained that you hold  onto their hands, loosely,  and
as you move, you jiggle a little bit. You come to an intersection, where you
can go forward, to the left, or to the right. You jiggle a little bit to the
left, and if  it's  incorrect, you  feel  a  certain amount  of  resistance,
because  they don't expect you to  move  that way. But when you  move in the
right direction, because they  think you might be able to  do it, they  give
way more easily, and there's no resistance. So you must always be jiggling a
little bit, testing out which seems to be the easiest way.
     My father told me the story and said he  thought it  would still take a
lot of practice. He never tried it himself.
     Later, when I was doing graduate work at Princeton, I decided to try it
on  a fellow  named Bill  Woodward.  I  suddenly  announced  that  I  was  a
mindreader, and could read his  mind. I told him to go into the "laboratory"
-- a big room  with rows of tables covered with equipment of  various kinds,
with electric circuits, tools,  and  junk all over the place  -- pick  out a
certain object, somewhere, and  come out.  I  explained, "Now I'll read your
mind and take you right up to the object."
     He went into the  lab, noted a particular object,  and came out. I took
his hand and started jiggling. We went down this aisle, then that one, right
to the object. We tried  it three times. One time I got the object  right on
-- and it was in the  middle of a whole bunch of stuff.  Another time I went
to the  right place but  missed the object by a few  inches -- wrong object.
The third  time, something went wrong. But it  worked better than I thought.
It was very easy.
     Some time after that, when I was about twenty-six  or so, my father and
I went to  Atlantic City,  where  they had  various carnival things going on
outdoors.  While  my  father  was  doing  some  business,  I went to  see  a
mindreader.  He was  seated on  the stage with  his back  to  the  audience,
dressed  in robes and  wearing a great  big  turban. He had an assistant,  a
little guy who was running around through  the audience, saying things like,
"Oh, Great Master, what is the color of this pocketbook?"
     "Blue!" says the master.
     "And oh, Illustrious Sir, what is the name of this woman?"
     "Marie!"
     Some guy gets up: "What's my name?"
     "Henry."
     I get up and say, "What's my name?"
     He doesn't answer.  The other guy  was obviously  a confederate,  but I
couldn't  figure out how the  mindreader  did the other tricks, like telling
the color of the pocketbook. Did he wear earphones underneath the turban?
     When I met up with my father, I told  him about it. He said, "They have
a code worked out, but I don't know what it is. Let's go back and find out."
     We went back to the place, and  my  father  said  to me, "Here's  fifty
cents. Go get your fortune read in the booth back there, and I'll see you in
half an hour."
     I knew what he was doing. He was going to tell the man a story,  and it
would go smoother if his  son wasn't there going,  "Ooh, ooh!" all the time.
He had to get me out of the way.
     When  he  came  back  he  told me  the whole code: "Blue is  'Oh, Great
Master,' Green is 'Oh, Most Knowledgeable One,'" and so forth. He explained,
"I went  up  to  him,  afterwards,  and  told  him I used  to do  a  show in
Patchogue, and we had a code, but it couldn't do many numbers, and the range
of colors was shorter. I asked him, 'How do you carry so much information?'"
     The mindreader was so proud  of his code that he sat down and explained
the  whole works to my  father.  My father was a salesman. He could set up a
situation like that. I can't do stuff like that.


--------
The Amateur Scientist

     When I was  a kid I  had a "lab." It  wasn't a laboratory in the  sense
that I would measure, or do important experiments.
     Instead,  I would play: I'd make a motor, I'd make a  gadget that would
go off when something passed a photocell. I'd play  around with selenium;  I
was piddling around all the  time. I did calculate a little bit for the lamp
bank, a  series  of switches  and bulbs  I  used  as  resistors  to  control
voltages. But all that was for application. I never did  any laboratory kind
of experiments.
     I also had a microscope and loved to watch things under the microscope.
It took patience:  I would get  something under the  microscope  and I would
watch it interminably. I saw many interesting things, like everybody sees --
a diatom slowly making its way across the slide, and so on.
     One day I was watching a paramecium  and  I  saw something that was not
described in the books I got in school  -- in  college,  even.  These  books
always simplify  things so the world will be more  like they want it  to be:
When they're talking  about the behavior of animals, they  always  start out
with,  "The  paramecium is  extremely simple;  it has a  simple behavior. It
turns as its slipper shape moves through the water until  it hits something,
at  which  time  it recoils,  turns through  an  angle, and then starts  out
again."
     It isn't really right. First of all, as everybody knows, the paramecia,
from  time to time, conjugate  with each other  -- they  meet  and  exchange
nuclei. How do they decide when it's time  to  do  that? (Never mind; that's
not my observation.)
     I watched these paramecia hit something, recoil, turn through an angle,
and  go again. The idea that it's  mechanical, like a computer program -- it
doesn't look that way. They go  different distances, they  recoil  different
distances,  they turn through angles that  are  different  in various cases;
they  don't always  turn to the  right;  they're  very  irregular.  It looks
random, because you don't know what they're hitting; you  don't know all the
chemicals they're smelling, or what.
     One of the things I wanted  to watch was what happens to the paramecium
when the water that it's in dries up. It was claimed that the paramecium can
dry up into  a sort  of hardened seed. I had a  drop of  water  on the slide
under my microscope, and  in  the drop of  water  was  a paramecium and some
"grass" --  at  the  scale of the  paramecium, it looked  like a  network of
jackstraws. As the  drop  of  water  evaporated, over  a time of fifteen  or
twenty minutes, the  paramecium got into a  tighter and  tighter  situation:
there was  more and more of this  back-and-forth until it could hardly move.
It was stuck between these "sticks," almost jammed.
     Then I saw something I had  never seen or heard of: the paramecium lost
its  shape. It could flex itself, like  an amoeba. It  began  to push itself
against  one  of  the sticks, and began dividing into  two prongs  until the
division was about halfway  up the paramecium, at which time it decided that
wasn't a very good idea, and backed away.
     So my  impression  of these animals is that their behavior is much  too
simplified in the  books. It is not so utterly mechanical or one-dimensional
as they  say.  They should  describe  the behavior  of these simple  animals
correctly. Until we see  how many  dimensions of  behavior even a one-celled
animal  has, we won't  be able  to  fully  understand  the behavior  of more
complicated animals.
     I also  enjoyed watching bugs.  I had an insect book  when  I was about
thirteen. It said that dragonflies are not harmful; they don't sting. In our
neighborhood it  was well known that "darning  needles," as  we called them,
were  very  dangerous  when they'd sting.  So if  we were outside  somewhere
playing baseball, or  something, and one of  these  things would fly around,
everybody  would  run for  cover,  waving  their arms,  yelling, "A  darning
needle! A darning needle!"
     So one day I was  on the beach, and I'd  just read  this book that said
dragonflies  don't sting. A  darning  needle came  along, and everybody  was
screaming and running around, and I just  sat there.  "Don't worry!" I said.
"Darning needles don't sting!"
     The thing landed on my  foot. Everybody was yelling  and it  was  a big
mess, because  this darning needle was sitting on my foot. And there I  was,
this scientific wonder, saying it wasn't going to sting me.
     You're sure  this is a story that's going to come out that it stings me
-- but it didn't. The book was right. But I did sweat a bit.
     I also had a little  hand  microscope. It was a toy microscope,  and  I
pulled the  magnification piece out of it, and would hold it in my hand like
a magnifying glass, even though it was a microscope of forty or fifty power.
With care you could hold the focus. So I could go around and look  at things
right out in the street.
     So when I was in graduate school at Princeton, I once took it out of my
pocket to look  at some ants that were crawling around on some ivy. I had to
exclaim out  loud, I was so  excited. What  I saw  was an  ant and an aphid,
which ants  take care of -- they carry them from plant to plant if the plant
they're on  is dying. In return the ants get partially digested aphid juice,
called "honeydew." I knew  that; my father had  told me about it,  but I had
never seen it.
     So here  was this aphid and sure enough, an  ant came along, and patted
it with its feet -- all around the aphid, pat,  pat, pat, pat, pat. This was
terribly  exciting! Then the juice came  out of the  back  of the aphid. And
because it was magnified, it looked  like a big, beautiful, glistening ball,
like  a balloon,  because of the  surface tension.  Because  the  microscope
wasn't  very  good,  the  drop  was  colored  a  little  bit from  chromatic
aberration in the lens -- it was a gorgeous thing!
     The  ant took this ball in its two front feet, lifted it off the aphid,
and  held it. The world is  so different at that scale that you can  pick up
water and hold it!  The ants  probably have  a  fatty or greasy  material on
their legs that doesn't break  the  surface tension of the  water when  they
hold it up. Then the ant broke  the surface of the  drop with its mouth, and
the  surface  tension collapsed the  drop right into  his gut. It  was  very
interesting to see this whole thing happen!
     In my room at Princeton I had a bay window with a U-shaped  windowsill.
One day some ants came  out on the windowsill and wandered around  a  little
bit. I got curious as to how they found things. I wondered, how do they know
where to go? Can they tell each other where food is,  like bees can? Do they
have any sense of geometry?
     This is  all amateurish; everybody knows the  answer, but I didn't know
the answer, so the first thing I did was to stretch some string across the U
of the bay window and hang a piece of folded cardboard with sugar on it from
the string. The idea of this was to isolate the sugar from the ants, so they
wouldn't find it accidentally. I wanted to have everything under control.
     Next I made a lot of little strips of paper and put  a fold in them, so
I could pick up ants  and ferry them from one  place  to another. I put  the
folded  strips  of paper in two places: Some were by the sugar (hanging from
the string), and the  others were near the ants in a  particular location. I
sat there all afternoon, reading and watching, until an ant happened to walk
onto  one of  my little paper ferries.  Then  I took him over to  the sugar.
After  a  few  ants  had been  ferried  over  to  the  sugar,  one  of  them
accidentally walked onto one of the ferries nearby, and I carried him back.
     I wanted to  see how  long it would  take  the  other ants  to  get the
message  to  go  to the "ferry terminal."  It  started slowly,  but  rapidly
increased until I was going mad ferrying the ants back and forth.
     But suddenly, when everything was going strong, I began  to deliver the
ants from the  sugar to a different spot. The question now was, does the ant
learn to go back to where it just came from, or does it go where it went the
time before?
     After a while there were practically no ants going  to  the first place
(which  would take them to the sugar), whereas there were many ants  at  the
second place,  milling around, trying to find the sugar. So I figured out so
far that they went where they just came from.
     In another experiment, I laid out a lot of glass microscope slides, and
got  the ants to walk on them,  back and  forth,  to some sugar I put on the
windowsill. Then,  by  replacing  an  old  slide  with  a  new  one,  or  by
rearranging  the slides, I  could demonstrate that  the ants had no sense of
geometry: they couldn't figure out where something was. If they  went to the
sugar one way, and there was a shorter way back, they would never figure out
the short way.
     It was also pretty clear from rearranging  the  glass  slides  that the
ants left some sort of trail. So then came a lot of easy experiments to find
out how long it takes a trail to dry up, whether it can be easily wiped off,
and  so on. I also found out the trail wasn't directional. If I'd pick up an
ant on a piece of paper, turn him  around and around, and then put  him back
onto the trail, he  wouldn't know that he was going  the wrong way  until he
met  another ant. (Later, in Brazil, I  noticed  some leaf-cutting ants  and
tried the  same experiment  on them. They could tell,  within a  few  steps,
whether they were going toward  the  food or away from it -- presumably from
the trail, which might be a series of smells in a pattern: A,  B, space,  A,
B, space, and so on.)
     I  tried at one point to make  the ants go around  in  a  circle, but I
didn't have enough patience to set it up. I could see no reason,  other than
lack of patience, why it couldn't be done.
     One thing  that made experimenting difficult  was that breathing on the
ants made them scurry. It  must be an  instinctive thing against some animal
that eats them  or disturbs  them. I don't know  if  it was the  warmth, the
moisture, or the smell of my breath that  bothered them, but I always had to
hold my  breath and  kind  of look to  one  side  so  as not to confuse  the
experiment while I was ferrying the ants.
     One question  that I  wondered about  was  why  the ant trails look  so
straight and  nice. The  ants look as if they know what they're doing, as if
they have a good sense of geometry. Yet the experiments that I did to try to
demonstrate their sense of geometry didn't work.
     Many  years later, when I was at Caltech and lived in a little house on
Alameda Street, some ants came out around the bathtub. I thought, "This is a
great  opportunity."  I put some sugar on the other  end of the bathtub, and
sat there  the whole  afternoon until  an ant finally found the  sugar. It's
only a question of patience.
     The moment the ant found the sugar, I picked up a colored pencil that I
had ready (I  had previously done experiments indicating that the ants don't
give a damn about pencil  marks -- they walk right over them -- so I  knew I
wasn't disturbing anything), and behind where the ant went I drew a line  so
I could tell where his trail was. The ant wandered a little bit wrong to get
back to the hole, so the line was quite wiggly, unlike a typical ant trail.
     When  the  next  ant to find the  sugar began to go back,  I marked his
trail with another color. (By the way, he  followed the first  ant's  return
trail back, rather  than his own  incoming trail. My theory is  that when an
ant has found some food, he leaves a much stronger trail than when he's just
wandering around.)
     This second ant was in  a great hurry and followed,  pretty  much,  the
original trail. But because  he was going so  fast he would go straight out,
as if he were coasting,  when the  trail was  wiggly. Often, as the ant  was
"coasting," he would find the trail  again. Already it was apparent that the
second ant's return was  slightly straighter. With successive ants  the same
"improvement"  of  the  trail  by  hurriedly and carelessly  "following"  it
occurred.
     I followed eight or ten ants with my pencil until their trails became a
neat line right along the bathtub. It's something like sketching: You draw a
lousy  line  at  first; then you  go over it a few times and it makes a nice
line after a while.
     I remember that when I was a kid  my father would tell me how wonderful
ants are, and how they cooperate. I would watch very carefully three or four
ants carrying a little  piece  of chocolate  back to  their  nest. At  first
glance it looks like efficient, marvelous, brilliant cooperation. But if you
look at it carefully, you'll see that it's  nothing of the kind: They're all
behaving as if  the chocolate is held up by something else. They  pull at it
one way or the  other  way. An ant may crawl over it while it's being pulled
at by the  others.  It wobbles, it wiggles, the directions are all confused.
The chocolate doesn't move in a nice way toward the nest.
     The Brazilian leaf-cutting ants, which are otherwise so marvelous, have
a very interesting  stupidity associated with them that I'm surprised hasn't
evolved out. It takes considerable work for the ant to cut the circular  arc
in  order to  get  a piece  of  leaf. When the cutting  is done,  there's  a
fifty-fifty chance that  the  ant will  pull on the  wrong side, letting the
piece he just cut fall to the  ground. Half the  time, the ant will yank and
pull and yank and pull on the wrong part of  the leaf, until it gives up and
starts to cut another piece. There is no attempt to pick up a piece that it,
or any other ant,  has already cut. So it's quite obvious, if you watch very
carefully, that it's not a brilliant business of cutting leaves and carrying
them away; they go to a leaf, cut an arc, and  pick the wrong  side half the
time while the right piece falls down.
     In Princeton the ants  found my larder, where I had jelly and bread and
stuff,  which was quite a  distance from  the window.  A long line  of  ants
marched along the floor across the living room. It was during the time I was
doing these experiments on the ants, so I thought to myself, "What can I  do
to stop  them from coming to my larder  without killing any ants? No poison;
you gotta be humane to the ants!"
     What  I did was this: In preparation, I put a bit of sugar about six or
eight inches from  their  entry point  into the room, that  they didn't know
about. Then I made those  ferry things again, and whenever  an ant returning
with food walked onto my little ferry, I'd carry him over and put him on the
sugar. Any  ant coming toward the larder that walked onto  a  ferry  I  also
carried over to  the sugar.  Eventually the  ants found  their way from  the
sugar  to  their hole, so  this new trail was being doubly reinforced, while
the old trail was being used  less and less. I knew that after half  an hour
or so the old trail would dry up, and in an hour they were out of my larder.
I didn't wash the floor; I didn't do anything but ferry ants.